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• Probabilistic predictions provide information 
that can increase the socio-economic value of 
weather and climate forecasts 

• Ensemble based probabilistic forecasts of 
events are typically based on the relative 
frequencies of events in the ensemble  

• Accurate predictions of forecast error 
variances are vital to probabilistic prediction 

Introduction 
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Forecast Error Variances 

• Forecast error variances 
are flow dependent 

• We can consider a 
climatological prior 
distribution of error 
variances 

 

3 

Large forecast error 

variance: Potential for 

large forecast errors 

Small forecast 

error variance: 

Predictability is 

high 

Today’s forecast 

error variance 
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Forecast Error Variance 
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Ensemble Forecasts 

• Ensemble forecasts provide 
estimates of forecast error 
variance as a function of the 
flow of the day 

• Ensemble variances are 
imperfect 

– Finite Size 

– Imperfect Model 

– Imperfect Initial 
Conditions 
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Today’s forecast 

error variance  

An imperfect ensemble 

prediction of today’s 

forecast error variance 

Inflating the ensemble perturbations can correct systematic 
under dispersion.  How can we account for random 
fluctuations about the actual variance due to sampling error? 
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Forecast Error Variance 



• Consider a normal distribution with mean zero and 
variance 1.   

• Now consider the distribution of possible variances 
based on M-member draws from this distribution.   
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Distribution of sample variances 

As the sample size increases the distribution of possible 

variance narrows 

Sample variance Sample variance Sample variance 
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• We want to account for random fluctuations due to sampling error in the 
ensemble. 

• Because of deficiencies in the ensemble the ensemble size is not necessarily 
the sample size that we want to account for.  

• In this sense, an 80 member ensemble could produce sampling errors like a 
10 member ensemble.   

• Theory (Bishop et al. 2013) shows how we can deduce this property, from 
long time series of pairs of innovations and ensemble variances, in terms of 
an effective ensemble size. 

 

 

“Effective Ensemble Size” 
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o Effective ensemble size is inversely 

proportional the relative variance of 

the distribution of ensemble 

variances 

o We calculate this property in terms 

of an expected value over a time 

series 

 

 

 2 2

2
2 2

var |1

|

E

E
k

 

 


variance 

mean 
P

ro
b
a
b
ili

ty
 D

e
n
s
it
y
 

Ensemble Variances 
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• Recent work has developed an 
analytic approximation to a 
distribution of possible forecast 
error variances given an imperfect 
ensemble variance.   

• Parameters defining such a 
distribution can be recovered from 
a long time series of pairs of 
innovations and ensemble 
variances  

– Bishop, Craig H., Elizabeth A. Satterfield, 2013: Hidden Error 
Variance Theory. Part I: Exposition and Analytic Model. Mon. Wea. 
Rev., 141, 1454–1468.  

– Bishop, Craig H., Elizabeth A. Satterfield, Kevin T. Shanley, 2013: 
Hidden Error Variance Theory. Part II: An Instrument That Reveals 
Hidden Error Variance Distributions from Ensemble Forecasts and 
Observations. Mon. Wea. Rev., 141, 1469–1483.  
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Distribution of forecast error variances  
given an ensemble prediction 

Posterior distribution of 

variances given an imperfect 

ensemble variance 

An imperfect ensemble 

prediction of today’s 

forecast error variance 

Forecast Error Variances 
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M=50 
M=10 

M=100 

An effective post-processing scheme will account for stochastic 

fluctuations of the ensemble variance about today’s actual 

forecast error variance. 

As the effective ensemble size 

increases the posterior distribution 

narrows and variance is better 

approximated by a single value 

“Effective Ensemble Size” 
 

Posterior is broad: 
Important to account 
for a distribution of 
variances 
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Forecast Error Variances Forecast Error Variances Forecast Error Variances 
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We want to incorporate 
climatological (i.e. means, 
statistical prediction, 
persistence) information 
about our analyzed variable to 
re-center the mean  

Heteroscedastic Post-Processing 

If the forecast error variance 
is not a single value, but a 
distribution, the degree to 
which climatological 
information should be 
incorporated within the 
ensemble is itself uncertain 

How do we post-process in a way that is consistent with a 
distribution of variances? 



• Step1 

– Draw a variance from 
the posterior 
distribution 
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Heteroscedastic Post-Processing 
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Posterior distribution 

given an imperfect 

ensemble variance 

An imperfect ensemble 

prediction of today’s 

forecast error variance 

Forecast Error Variances 
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• Step1 

– Draw a variance from the posterior 
distribution  

• Step 2 

– Use that variance along 
with climatological 
information to re-center 
the forecast as a 
weighted combination of 
the climatological mean 
and the ensemble mean 
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Heteroscedastic Post-Processing 
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Weighting given to 

climate mean is 

dependent on the 

value of error 

variance, which is 

randomly drawn from 

the posterior 



• Step1 

– Draw a variance from the posterior 
distribution 

• Step 2 

– Use that variance along with 
climatological information to re-
center the forecast as a weighted 
combination of the climatological 
mean and the ensemble mean 

• Step 3 

– Use the variance drawn 
from the posterior along 
with climatological 
information  to perturb 
the re-centered forecast  

12 

Heteroscedastic Post-Processing 
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The distribution from 

which the perturbations 

are drawn has a variance 

that changes with each 

draw from the posterior 



• Step1 

– Draw a variance from the posterior 
distribution 

• Step 2 

– Use that variance along with 
climatological information to re-
center the forecast as a weighted 
combination of the climatological 
mean and the ensemble mean 

• Step 3 

– Use the variance drawn from the 
posterior along with climatological 
information  to perturb the re-
centered forecast  

• Step 4 
– Repeat until a sufficient 

ensemble size is achieved.  
We will refer to this ensemble 
as “Fully Processed”. 13 

Heteroscedastic Post-Processing 
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For each ensemble 

member this 

variance is drawn 

from the posterior 
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Heteroscedastic Post-Processing 
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Higher kurtosis 
Broader tails 
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1.   Exp1:  Prior Mean  
 Ignore ensemble prediction of 

variance 
 Variance is the same for every 

forecast  
2.  Exp2: Adjusted Ensemble        

 Use only the ensemble prediction of 
the forecast error variance 

 Variances are inflated or attenuated 
to be consistent with innovation 
statistics 

 Ignore information from the prior 
distribution of variances 

3.   Exp3: Posterior Mean  
 Use the mean of the posterior 

distribution. 
 Ignore the variable nature of the 

forecast error variance 

 

 

“Straw Man” Homoscedastic Methods 
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Use the same post-processing 

algorithm to adjust the mean and 

add a perturbation. 

 

This time, use a single value of 

variance (homoscedastic) 

associated with each forecast 

We define variances in three 

different ways, each with differing 

amounts of information: 



Synthetic Data Results 
Rank Frequency Histograms 

Fully Processed (FP) 

Exp2: Adjusted 

Ensemble 

Exp3: Posterior Mean 

Exp1: Prior Mean 

Even though all ensembles have the correct variance on average, only the 

FP ensemble accounts for the variable nature of possible error variances.   

Ignores ensemble variance 

information 

Ignores prior 

variance information 

Ignores distribution of 

variance 

Accounts for a 

posterior distribution 

of variances 
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Weather Roulette 
 (Hagedorn and Smith, 2008) 

 Player A opens up a weather roulette casino 
 Player A creates a roulette wheel where each slot is an 

equally probable state based on climatology 
 Player A sets the odds in each slot based on the FP 

ensemble 
 Player B places bets based on their ensemble  
 Each starts with a $1 bet and reinvests their winnings 

every round  
 Value of the ensemble is interpreted using an effective 

daily interest rate (the rate at which A goes broke or gets 
rich!) 

 

 



Synthetic Data Results –  
Effective Daily Interest Rate 

 Effective Ensemble Size M=2 M=4 M=6 M=8 M=10 

 
Exp1: Prior Mean 3.95 6.31 7.66 8.50 9.11 

Exp2: Adjusted Ensemble   69.90 13.49 5.56 3.06 1.88 

Exp3: Posterior Mean  1.06 0.44 0.16 0.08 0.04 

Weather Roulette Interest Rate (%) Earned by the FP Ensemble when 
“straw man” ensembles are played (average over 10 trials) 

As ensemble size increases, the posterior 

distribution narrows. 
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Posterior Mean

Prior Mean

Adj Ensemble
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500mb virtual temperature 
May 2012 FNMOC post-processed ensemble 

 

Accounting for a distribution 
shows benefit up to 144-hr leads 

Weather Roulette Interest Rate (%) Earned by the FP 

Ensemble when “straw man” ensembles are played 

(average over 10 trials) 

Exp1: Prior Mean 
FP ensemble wins more 

money as the lead time 

increases and the 

distribution of the prior 

broadens. 

Exp2: Adjusted 

Ensemble 
The effective ensemble 

size increases with lead 

time, reducing the amount 

the FP ensemble wins.  

 

Exp3: Posterior  Mean 
Combining ensemble and 
prior estimates of variance 
is optimal.  

The FP wins money until 

the  posterior distribution 

becomes sufficiently 

narrow 

Lead Time (hr) 



• Forecasts may benefit from the inclusion of non-NWP 
information (climatological means, etc.) 

• The extent to which this information should be included 
is itself uncertain. 

• Accounting for the variable nature of variances matters 
when:  
– Distribution of prior (climatological) error variances is broad   

– Ensemble based variance prediction is uncertain (small effective ensemble 
size) 

• The recovery of parameters that define the posterior 
distribution depends on a series of ensemble and 
innovation pairs 
– Archives of observations, hindcasts  
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Application to intraseasonal to  
interannual time scales 



 We have presented a new post-processing scheme which accounts 
for a distribution of possible variances given an imperfect 
ensemble predictions  

 Bishop et al 2013 introduce a new diagnostic, the effective 
ensemble size, which measures the ability of the ensemble to track 
fluctuations in actual error variance.  

 Application to synthetically generated data and 500hPa forecasts 
of virtual temperature from the operational FNMOC ensemble 
demonstrate that accounting for the variable nature of forecast 
error variances leads to improved probabilistic skill scores.  

Main Conclusions 
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THANK YOU 
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EXTRA SLIDES 
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• A Brier score was computed for 100 equally likely climatological bins 

• The Brier Score was then averaged over all bins 

• Shown here is the associated Brier Skill Score where the (re-centered 

on deterministic) raw ensemble is used as a reference value 

• Results shown are averaged over 10 trials each with a random selection 

of 5000 observations 

Brier Skill Score relative to re-centered Raw Ensemble   FP is the only 
method that 
accounts for a 
range of 
variances, which 
is important until 
posterior narrows 
at 144-hrs  

Both FP and 
Posterior Mean 
weight variance 
information from 
ensemble and 
prior 
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Comparison to Wang and Bishop  
dressing method 

Wang and Bishop (2005) 

Dressing Method 
• Spread is corrected by adding a 

perturbations to raw ensemble 

members 

• Perturbation is taken from 

normal distribution with variance 

derived from innovation statistics 

• A larger ensemble can be 

formed by dressing each raw 

ensemble member multiple 

times 

0
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Re-center on Deterministic Weight Climatology and Deterministic 



Effective Ensemble Size Derivation  
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variances given a true 
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Parameter Recovery 
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 In order to apply this post-processing technique to real data, we must 

obtain the parameters defining the climatological prior, likelihood, and 

posterior  

 Bishop et al (2012) show how these parameters can be deduced from 

time series of innovations and ensemble variance predictions  (v , s2) 

   

relative variance of the 
ensemble variances 

Parameters describing the 
climatological distribution of 
variances 

Inflates or 
attenuates 
ensemble variances 


